Abstract
The relationship between certain non-associative algebras and the deterministic theory of population genetics was first investigated by Etherington(3)-(8), who defined the concepts of baric, train and special train algebras. Gonshor(10)dealt with, among other topics, algebras corresponding to autopolyploidy, on the assumption that chromosome segregation operated. In this paper [ discuss algebras corresponding to more general systems of inheritance among polyploids, which have been discussed without using algebras by Haldane(11), Geiringer(9), Moran(13)and Seyffert (16). These algebras are special cases of what I have defined as segregation algebras, and mixtures of them. All the algebras corresponding to a fixed ploidy have a relationship which I have called special isotopy. An example shows that algebras arise in other genetic systems which are not isotopic to segregation algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.