Abstract

Speciation is regarded primarily as a bifurcation from an ancestral species into two distinct taxonomic units, but gene flow can create complex signals of phylogenetic relationships, especially among different loci. We evaluated several hypotheses that could account for phylogenetic discord between mitochondrial DNA (mtDNA) and nuclear DNA (nuDNA) within Hawaiian duck (Anas wyvilliana), including stochastic lineage sorting, mtDNA capture and widespread genomic introgression. Our results best support the hypothesis that the contemporary Hawaiian duck is descended from an ancient hybridization event between the mallard (Anas platyrhynchos) and Laysan duck (Anas laysanensis). Whereas mtDNA clearly shows a sister relationship between Hawaiian duck and mallard, nuDNA is consistent with a genetic mosaic with nearly equal contributions from Laysan duck and mallard. In addition, coalescent analyses suggest that gene flow from either mallard or Laysan duck, depending on the predefined tree topology, is necessary to explain contemporary genetic diversity in Hawaiian ducks, and these estimates are more consistent with ancient, rather than contemporary, hybridization. Time since divergence estimates suggest that the genetic admixture event occurred around the Pleistocene-Holocene boundary, which is further supported by circumstantial evidence from the Hawaiian subfossil record. Although the extent of reproductive isolation from either putative parental taxon is not currently known, these species are phenotypically, genetically and ecologically different, and they meet primary criteria used in avian taxonomy for species designation. Thus, the available data are consistent with an admixed origin and support the hypothesis that the Hawaiian duck may represent a young hybrid species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call