Abstract

A genetic algorithm (GA) uses the principles of evolution, natural selection, and genetics to offer a method for parallel search of complex spaces. This paper describes a GA that can perform on-line adaptive state estimation for linear and nonlinear systems. First, it shows how to construct a genetic adaptive state estimator where a GA evolves the model in a state estimator in real time so that the state estimation error is driven to zero. Next, several examples are used to illustrate the operation and performance of the genetic adaptive state estimator. Its performance is compared to that of the conventional adaptive Luenberger observer for two linear system examples. Next, a genetic adaptive state estimator is used to predict when surge and stall occur in a nonlinear jet engine. Our main conclusion is that the genetic adaptive state estimator has the potential to offer higher performance estimators for nonlinear systems over current methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call