Abstract
Protein tyrosine phosphatase 1B (PTP1B) is involved in multiple signaling pathways by down-regulating several tyrosine kinases. For example, gene-targeting studies in mice have established PTP1B as a critical physiologic regulator of metabolism by attenuating insulin signaling. PTP1B is an important target for the treatment of diabetes, because the PTP1B null mice are resistant to diet-induced diabetes and obesity. On the other hand, despite the potential for enhanced oncogenic signaling in the absence of PTP1B, PTP1B null mice do not develop spontaneous tumors. Because the majority of human cancers harbor mutations in p53, we generated p53/PTP1B double null mice to elucidate the role of PTP1B in tumorigenesis. We show that genetic ablation of PTP1B in p53 null mice decreases survival rate and increases susceptibility towards the development of B lymphomas. This suggested a role for PTP1B in lymphopoiesis, and we report that PTP1B null mice have an accumulation of B cells in bone marrow and lymph nodes, which contributed to the increased incidence of B lymphomas. The mean time of tumor development and tumor spectrum are unchanged in p53-/-PTP1B+/- mice. We conclude that PTP1B is an important determinant of the latency and type of tumors in a p53-deficient background through its role in the regulation of B-cell development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.