Abstract
Phospholipases are critical enzyme mediators participating in many aspects of cellular function through modulating the generation of lipid 2nd messengers, membrane physical properties, and cellular bioenergetics. Here, we demonstrate that mice null for calcium-independent phospholipase A(2)γ (iPLA(2)γ(-/-)) are completely resistant to high fat diet-induced weight gain, adipocyte hypertrophy, hyperinsulinemia, and insulin resistance, which occur in iPLA(2)γ(+/+) mice after high fat feeding. Notably, iPLA(2)γ(-/-) mice were lean, demonstrated abdominal lipodystrophy, and remained insulin-sensitive despite having a marked impairment in glucose-stimulated insulin secretion after high fat feeding. Respirometry of adipocyte explants from iPLA(2)γ(-/-) mice identified increased rates of oxidation of multiple different substrates in comparison with adipocyte explants from wild-type littermates. Shotgun lipidomics of adipose tissue from wild-type mice demonstrated the anticipated 2-fold increase in triglyceride content after high fat feeding. In sharp contrast, the adipocyte triglyceride content was identical in iPLA(2)γ(-/-) mice fed either a standard diet or a high fat diet. Respirometry of skeletal muscle mitochondria from iPLA(2)γ(-/-) mice demonstrated marked decreases in state 3 respiration using multiple substrates whose metabolism was uncoupled from ATP production. Shotgun lipidomics of skeletal muscle revealed a decreased content of cardiolipin with an altered molecular species composition thereby identifying the mechanism underlying mitochondrial uncoupling in the iPLA(2)γ(-/-) mouse. Collectively, these results identify iPLA(2)γ as an obligatory upstream enzyme that is necessary for efficient electron transport chain coupling and energy production through its participation in the alterations of cellular bioenergetics that promote the development of the metabolic syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.