Abstract

BTB and CNC homology 1 (Bach1) is a transcriptional repressor of heme oxygenase (HO)-1. The effects of Bach1 disruption on hyperoxic lung injury in newborn mice have not been determined. We aimed to investigate the role of Bach1 in the newborns exposed to hyperoxia. Bach1-/- and WT newborn mice were exposed to 21% or 95% oxygen for 4 d and were then allowed to recover in room air. Lung histology was assessed and lung Bach1, HO-1, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1 mRNA levels were evaluated using RT-PCR. Lung inflammatory cytokine levels were determined using cytometric bead arrays. After 10 d recovery from neonatal hyperoxia, Bach1-/- mice showed improved lung alveolarization compared with WT. HO-1, IL-6, and MCP-1 mRNA levels and IL-6 and MCP-1 protein levels were significantly increased in the Bach1-/- lungs exposed to neonatal hyperoxia. Although an increase in apoptosis was observed in the Bach1-/- and WT lungs after neonatal hyperoxia, there were no differences in apoptosis between these groups. Bach1-/- newborn mice were well-recovered from hyperoxia-induced lung injury. This effect is likely achieved by the antioxidant/anti-inflammatory activity of HO-1 or by the transient overexpression of proinflammatory cytokines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call