Abstract

AbstractGenetic and environmental factors may interact to control sex determination in fishes. A common pattern of initial female differentiation and subsequent male transformation before maturation in non‐hermaphroditic fishes and after maturation in sequentially hermaphroditic fishes has suggested that changes in developmental timing may be responsible for the evolution of various expressions of sexual lability. Sequential hermaphroditism is rare in freshwater fishes, but investigators report degrees of sexual lability at four distinct life stages in cichlid fishes. Some cichlids undergo genetic sex determination and are not labile. Lability at the larval stage allows temperature or pH to determine sex. Social interactions apparently determine sex at the juvenile stage in the Midas cichlid (Amphilophus citrinellus). Most reports of post‐maturational sex change in cichlids are anecdotal or unsubstantiated. The common occurrence of same‐sex spawning suggests that many species are incapable of sex change. Sequential hermaphroditism is concluded not to be typical, except for the checkerboard cichlid (Crenicara punctulata), which regularly undergoes functional female‐to‐male transformation. Expression of sexual lability at four life stages in one family of fishes corroborates a role for developmental timing in the evolution of sequential hermaphroditism as well as environmentally controlled sex determination. The broad phylogenetic distribution of sexual lability in cichlids indicates that processes capable of producing sex change are generally present. The rarity of sequential hermaphroditism in cichlids and possibly other freshwater fishes is likely due to unpredictability of food and therefore potential mate distributions compared with coral reef habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.