Abstract

Abstract: A genetical relationship between skarn formation and mineralization is investigated for the Kamioka skarn deposits which are the largest Zn‐Pb producer in Japan. In the Mozumi deposit, one of main deposits in the Kamioka mining area as well as Tochibora and Maruyama, clinopyroxene skarn was generally subjected to later replacement by garnet or magnetite–calcite–quartz during the Zn‐Pb mineralization. The replacement of hedenbergitic clinopyroxene by andraditic garnet resulted in the formation of diopsidic clinopyroxene relicts. With the progress of replacement, the S/So value (So: an estimated area occupied by an original clinopyroxene grain in a thin section, S: a total area of relict clinopyroxene fragments) which is an index of the degree of replacement decreases from 0. 7 to 0. 1, and the hedenbergite mole percent of relict clinopyroxene decreases drastically from about 65 to less than 40. A close association of andraditic garnet and sphalerite suggests that heden‐bergitic clinopyroxene skarn played an important role to reduce the relatively oxic ore‐forming fluid enriched in Zn2+ and SO42– and to precipitate sphalerite from the fluid. Ferrous iron in the hedenbergitic clinopyroxene skarn was oxidized to form andraditic garnet. Besides this garnet formation, the mineral assemblage of magnetite–calcite–quartz replaced the clinopyroxene skarn at the time of mineralization. In both cases, the reduction of relatively oxic ore‐forming fluid by hedenbergitic clinopy‐roxene skarn at the later stage brought about the precipitation of sulfide minerals.In contrast, these types of later replacement are not found in the Tochibora deposit. Instead, graphite‐bearing crystalline limestone and relatively fresh clinopyroxene skarn are common. Mineralized clinopyroxene skarn has high graphite carbon contents relative to barren one, suggesting that the amount of graphite in the skarn was an important controlling factor for mineralization. It is very likely that the graphite played a role of reducing agent during the mineralization in the Tochibora deposit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.