Abstract
The Dongpuzi deposit is an epithermal gold deposit located in the southern margin of the Shaozihe volcanic fault basin in the Liaodong Peninsula. On the basis of fluid inclusion and C–H–O–S–Pb isotope data, a metallogenic model is established for the Dongpuzi deposit. The mineralization at the Dongpuzi deposit has experienced quartz–pyrite (I), quartz–sulfide (II), and quartz–calcite (III) stages. The quartz from ore stage II has liquid-dominated aqueous inclusions, which have homogenization temperatures ranging from 113 to 162 °C and salinities varying from 3.2 to 9.6 wt% NaCl equiv. The quartz from the quartz–calcite stage has decreasing homogenization temperatures (106~143 °C) and salinities (2.7~6.9 wt% NaCl equiv.). The fluid inclusion data indicate that the gold ores were precipitated from low-temperature and low-salinity solutions, with an obvious decrease in temperature and salinity from ore stages II to III. The calculated δ18Owater values for the quartz of ore stage II range from −14.71‰ to −13.31‰, and the corresponding δDwater values range from −103.3‰ to −96.1‰, indicating that the ore-forming fluids could be of a meteoric origin. The calcite from ore stage III has δ13CV-PDB values of −4.5‰ to −4.2‰ and δ18OV-SMOW values of +7.0‰ to +7.4‰, indicating a mantle source for the carbon. The pyrite yielded δ34S values of +4.1‰ to +6.6‰ and Pb isotopes consistent with those of the host trachyte porphyry and volcanic rocks of the Xiaoling Formation, which suggests that the S and Pb in gold ores were dominantly derived from the host trachyte porphyry and volcanic rocks of the Xiaoling Formation, with some combination of Paleoproterozoic metamorphic rocks of the Gaixian Formation. These results, together with the ore geology, indicate that the Dongpuzi deposit is a typical low-sulfidation epithermal gold deposit with important ore-forming materials input from the host trachyte porphyry, volcanic rocks of the Xiaoling Formation, and Paleoproterozoic metamorphic rocks of the Gaixian Formation. The Dongpuzi deposit was formed under an extensional setting related to the Early Cretaceous lithospheric extension and thinning of the eastern North China Craton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.