Abstract

In depth of the Simao Basin (2390 to 2650 m depth interval), many gray mudstone or carbonate rocks are developed in the red salt-related strata, and pyrite crystals are found in the fissure and matrix. In this study, petrology, mineralogy, element geochemistry, and LA-MC-ICP-MS in situ sulfur isotope analysis were used to constrain the genesis of pyrite, and the influence of relevant geological activities on potash mineralization was discussed. The results show that: (1) In the upper part of the salt layer, particle size of the pyrite ranges from 50 to 300 μm. The crystal morphology is mainly pentagonal-dodecahedral and irregularly granular, with a small amount of cuboidal pyrite. In the interlayer between rock salt, particle size of the pyrite is from 50 to 100 μm, and the crystals are mainly octahedral. (2) The S/Fe value of pentagonal-dodecahedral pyrite is significantly greater than 2; the S/Fe value of octahedral and cubic pyrite is less than 2; and the S/Fe value of irregular granular pyrite is close to 2. (3) The δ34SV-CDT values of pyrite in the upper salt-related strata range from −15.65‰ to 11.81‰, and the average δ34SV-CDT values of all samples range from 0.79‰ to 8.20‰. The δ34SV-CDT values of pyrite interlayer between rock salt range from −15.02‰ to −6.36‰, with an average value of −10.66‰. The above results indicate that the pyrite in the upper part of the rock salt layer was formed in a medium-low temperature hydrothermal environment, and the ore-forming sulfur elements have hydrothermal sources, bacterial sulfate reduction (BSR) sources, and thermochemical sulfate reduction (TSR) contributions. The pyrite between the rock salt layers is of sedimentary origin, and the ore-forming sulfur element comes from BSR. At present, there is no evidence of the influence of hydrothermal activities on deep potash-rich salt bodies, and the influence on the Mengyejing potash deposit has continued since the metallogenic period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.