Abstract

Folia are an unusual speleothem type resembling inverted cups or bracket fungi. The mechanism of folia formation is not fully understood and is the subject of an ongoing debate. This study focuses on an occurrence of folia present in Santa Catalina Cave, a non-thermal epigenic cave located close to Matanzas (Cuba). The sedimentology, morphology, petrology, permeability and geochemistry of these folia have been studied to gain new insight on the processes leading to their development. It is concluded that folia in Santa Catalina Cave formed at the top of a fluctuating water body, through CO2-degassing or evaporation, which may have been enhanced by the proximity to cave entrances. Two observations strongly support our conclusions. (1) When compared to other subaqueous speleothems (e.g. cave clouds) present in the same rooms, folia occur exclusively within a limited vertical interval that likely represents an ancient water level. Folia occur together with calcite rafts and tower cones that developed, respectively, on top of and below the water level. This suggests that a fluctuating interface is required for folia formation. (2) The measured permeability of the folia is too high to trap gas bubbles. Thus, in contrast to what has been proposed in other studies, trapped bubbles of CO2 cannot be invoked as the key factor determining the genesis and morphology of folia in this subaqueous environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.