Abstract

Situated along the Yanbu Suture Zone, the Al-Wask ophiolite is one of the largest and best-preserved ophiolite sequences in the Proterozoic Arabian shield. A mantle section of serpentinized ultramafics is structurally overlain by a crustal section of gabbros and pillow lavas. The whole ophiolite sequence is capped by pelagic sedimentary cover, and tectonically emplaced over a metamorphosed island-arc volcano-sedimentary succession. The Al-Wask ultramafic rocks are strongly deformed, metamorphosed, and altered by carbonatization and silicification. Samples dominated by antigorite indicate upper greenschist to lower amphibolite facies peak metamorphic grade, whereas samples dominated by lizardite and magnesite preserve lower grade conditions that we interpret as a cooling path buffered to low CO<sub>2</sub> activity by the increasing stability of magnesite with decreasing temperature. Nearly all the primary silicate minerals have been replaced by serpentine minerals, leaving only relics of primary olivine and chromian spinel. Petrographic observation of relict olivine and spinel and of mesh and bastite textures in the serpentines suggest that the peridotite protoliths were mainly harzburgite with minor dunite. Whole-rock compositions of serpentinites show low CaO (&lt;0.1 wt.%), Al<sub>2</sub>O<sub>3</sub> (&lt;1.5 wt.%), and Y (&lt;0.4 ppm) combined with high Mg# (0.90–0.92), Ni, Co, and Cr contents; all these indicate a highly refractory mantle protolith. The mineral chemistry of relict primary spinel and olivine provides additional petrogenetic and geodynamic indicators. The high Cr# (&gt; 60) and low TiO<sub>2</sub> (≤0.2 wt. %) of spinel and high forsterite contents (90–92) of associated olivine indicate residual mantle that underwent extensive partial melt extraction. The whole-rock and mineral chemistry of the serpentinized ultramafic rocks are both consistent with extracted melt fractions from ∼32 to 38 percent. This extent of melting is typical of fore-arc supra-subduction zone settings, which is the most likely tectonic environment for formation and preservation of the Al-Wask ophiolite. Two types of magnesite deposits can be distinguished in the Al-Wask mantle section: an early generation of massive magnesite and a later generation of magnesite veins. Hence the Al-Wask ophiolite underwent multiple stages of carbonatization, likely involving different sources of CO<sub>2</sub>-bearing fluids. The massive magnesite likely formed at relatively high temperature during cooling from peak metamorphic condition from CO<sub>2</sub>-bearing fluid probably derived from decomposition of subducted carbonates. Using thermodynamic calculations in the simple MgO-SiO<sub>2</sub>-H<sub>2</sub>O-CO<sub>2</sub> system, we constrain the path of the reaction boundary where lizardite and magnesite can coexist at equilibrium. On the other hand, the cryptocrystalline magnesite veins fill tectonic fractures and likely formed at low temperature and shallow levels, after serpentinization and ophiolite obduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call