Abstract

Embryonal carcinoma (EC) cells can be efficiently transfected with cloned DNAs but there is a strong tendency for expression from transfected genes to be lost from stably transformed cells. To investigate the mechanism responsible for this loss of expression, we transfected P19 EC cells with a gene encoding the E. coli beta-galactosidase and examined expression of this gene in clonal populations of cells. Cells that carry and express the beta-galactosidase gene give rise to cells that do not express at a rate of about 0.02 events per cell per cell division. These non-expressing cells were of two types, some had lost the transfected genes while others had inactivated them. In those cells that retained but inactivated the transfected genes, the inactive state was stable and suppression was at the level of transcription initiation but not associated with increased DNA methylation. Because transfected DNAs integrate into the genome as tandem arrays, the gene loss and inactivation seen in EC cells may be analogous to the repeat-induced gene inactivation seen in lower eukaryotes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call