Abstract

The fission yeast Schizosaccharomyces pombe switches mating type by transposition of a copy of DNA derived from either of the two storage cassettes, mat2 -P and mat3 -M, into the expression locus, mat1 . The recombinational event of switching is initiated by a double-stranded DNA break present in approximately 20% of the molecules at mat1 . Fifty-three mutants defective in switching of mating type have been isolated previously, and each has been assigned to 1 of 10 linkage groups. One group consists of cis-acting mutations at mat1 , which reduce the amount of the DNA double-strand cut. The remaining nine groups are mutations in genes that are unlinked to the mating-type locus and are studied here. Three ( swi1 , -3, -7) are required for formation of the double-strand cut, whereas the others are not. Mutants of three genes ( swi4 , -8, -9) undergo high-frequency rearrangement of the mating-type locus indicative of errors of resolution of recombinational intermediates. The remaining three ( swi2 , -5, -6) have normal levels of cut, do not make errors of resolution, and possibly are required either for efficient utilization of the cut or determining the directionality of switching. The data suggest that the switching process can be dissected into genetically distinguishable steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.