Abstract

Ameloblasts are sensitive cells whose metabolism and function may be affected by inflammatory stimuli. The aim of this study was to evaluate the possible association between polymorphisms in immune response-related genes and molar-incisor hypomineralization (MIH), and their interaction with polymorphisms in amelogenesis-related genes. DNA samples were obtained from 101 nuclear families that had at least 1 MIH-affected child. Eleven single-nucleotide polymorphisms (SNPs) were investigated in immune response genes using TaqMan® technology allele-specific probes. A transmission disequilibrium test was performed to verify overtransmission of alleles in all MIH families, as well as in families only with mild or severe MIH-affected children. Gene-gene interactions between the immune-related and amelogenesis-related polymorphisms were analyzed by determining whether alleles of those genes were transmitted from heterozygous parents more often in association than individually with MIH-affected children. In severe cases of MIH, significant results were observed for rs10733708 (TGFBR1, OR = 3.5, 95% CI = 1.1–10.6). Statistical evidence for gene-gene interactions between rs6654939 (AMELX) and the SNPs rs2070874 (IL4), rs2275913 (IL17A), rs1800872 (IL10), rs1800587 (IL1A), and rs3771300 (STAT1) was observed. The rs2070874 SNP (IL4) was also significantly overtransmitted from heterozygous parents with the rs7526319 (TUFT1) and the rs2355767 (BMP2) SNPs, suggesting a synergistic effect of the transmission of these alleles with susceptibility to MIH. This family-based study demonstrated an association between variation in TGFBR1 and MIH. Moreover, the polymorphisms in immune response and amelogenesis genes may have an additive effect on the risk of developing MIH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call