Abstract

ObjectiveGenetics factors are likely to play a role in the risk, clinical presentation and treatment outcome in major depressive disorder (MDD). In this study, we investigated the role of three candidate genes for MDD; calcium voltage-gated channel subunit alpha1 C (CACNA1C ), cholinergic receptor nicotinic alpha 7 subunit (CHRNA7 ), and mitogen-activated protein kinase 1 (MAPK1).MethodsTwo-hundred forty-two MDD patients and 326 healthy controls of Korean ancestry served as samples for the analyses. Thirty-nine single nucleotide polymorphisms (SNPs) within CACNA1C, CHRNA7, and MAPK1 genes were genotyped and subsequently tested for association with MDD (primary analysis) and other clinical features (symptoms’ severity, age of onset, history of suicide attempt, treatment outcome) (secondary analyses). Single SNPs, haplotypes and epistatic analyses were performed.ResultsSingle SNPs were not associated with disease risk and clinical features. However, a combination of alleles (haplotype) within MAPK1 was found associated with MDD-status. Secondary analyses detected a possible involvement of CACNA1C haplotype in resistance to antidepressant treatment.ConclusionThese data suggest a role for MAPK1 and CACNA1C in MDD risk and treatment resistance, respectively. However, since many limitations characterize the analysis, the results must be considered with great caution and verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call