Abstract
As in mammals, fatty acid (FA) metabolism plays diverse and vital roles in regulating food intake in fish. Multiple lines of evidence suggest that the effect of FA metabolism on food intake is linked to changes in the level of neuropeptide Y (NPY) in the hypothalamus of the rainbow trout. In mammals, the evidence suggests that FA metabolism regulates feeding via hypothalamic NPY. NPY is therefore considered an important factor that mediates the modulation of food intake by FA metabolism in vertebrates. The stimulatory effect of NPY on food intake is well known. However, to the best of our knowledge, the effect of NPY on FA metabolism in the hypothalamus has not been examined. In this study, we cloned the cDNA of four key enzymes involved in FA metabolism and assessed the effect of energy status and NPY on their mRNA expression in the hypothalamus of grouper. The full-length cDNAs of UCP2 and CPT1a and the partial coding sequence (CDS) of ACC1 and FAS were isolated from the grouper hypothalamus. These genes are expressed in the hypothalamus and during the organogenetic stage of embryogenesis. A feeding rhythm study showed that the hypothalamic expression level of NPY and CPT1a was highly correlated with feeding rhythm. Long-term fasting was found to significantly induce the hypothalamic mRNA expression of NPY, CPT1a and UCP2. An in vitro study demonstrated that NPY strongly stimulated CPT1a and UCP2 mRNA expression in a time- and dose-dependent manner. Collectively, these results suggest that these four genes related to FA metabolism may play a role in regulating food intake in grouper and, that NPY modulates FA metabolism in the grouper hypothalamus. This study showed, for the first time in vertebrates, the effect of NPY on the gene expression of FA metabolism-related enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.