Abstract

The pUM505 plasmid was isolated from a clinical strain of Pseudomonas aeruginosa. This plasmid contains a genomic island with sequence similar to islands found in chromosomes of virulent P. aeruginosa clinical isolates. The objective of this work was to determine whether pUM505 increases the virulence of P. aeruginosa and to identify the genes responsible for this property. First, using the lettuce-leaf model, we found that pUM505 significantly increases the virulence of P. aeruginosa reference strain PAO1. pUM505 also increased the PAO1 virulence in a murine model and increased cytotoxicity of this strain toward HeLa cells. Thus, we generated a pUM505 gene library of 103 clones in the pUCP20 binary vector. The library was transferred to Escherichia coli TOP10 and P. aeruginosa PAO1 to identify genes. The lettuce-leaf model allowed us to identify three recombinant plasmids that increased the virulence of both E. coli and P. aeruginosa strains. These recombinant plasmids also increased the virulence of the PAO1 strain in mice and induced a cytotoxic effect in HeLa cells. Eleven genes were identified in the virulent transformants. Of these genes, only the pUM505 ORF 2 has homology with a gene previously implicated in virulence. These results indicate that pUM505 contains several genes that encode virulence factors, suggesting that the plasmid may contribute directly to bacterial virulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call