Abstract

The genetic control of plant height was studied in crosses of four spring wheats involving the standard height variety Ramona 50 and short-statured selections Olesen, D6301, and D6899. Data from parent, F(1), F(2), and F(3) populations indicated that four independently segregating loci account for most of the differences among the four varieties. Two major genes of a highly recessive nature condition reduced height in Olesen and the Norin 10 derivative D6301. Olesen also carries a third dwarfing gene which is partially dominant in its effects over genes for tallness. This gene, or a gene that acts in a similar manner, is also present in the standard height variety Ramona 50. Dwarfing in D6899, a derivative of Tom Thumb, is controlled primarily by a single gene with mainly additive effects which is not present in any of the other three varieties.Genetic components estimated from generation means (parental, F(1), F(2), F(3), and backcross) indicated that additive gene effects were the major component of variation in four of the six crosses, and of similar magnitude to dominance effects in another cross. The primary source of genetic variation in the cross Olesen x D6899 was due to epistasis with both additive x additive and dominance x dominance effects of major importance. The results of the generation mean analyses were consistent with the models for major-gene control of plant height based on segregation patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call