Abstract

Sixty-three clinical isolates identified as Escherichia coli, 30 from the human urinary tract and 33 derived from other human origins, were screened for proline/glycine betaine transporters similar to those that support proline catabolism and proline- or glycine betaine-based osmoregulation in E. coli K-12. Both molecular (DNA- and protein-based) analyses and physiological tests were performed. All tests were calibrated with E. coli K-12 derivatives from which genetic loci putP (encoding a proline transporter required for proline catabolism), proP, and (or) proU (loci encoding osmoregulatory proline/glycine betaine transporters) had been deleted. All clinical isolates showed both enhanced sensitivity to the toxic proline analogue azetidine-2-carboxylate on media of high osmolality and growth stimulation by glycine betaine in an artificial urine preparation of high osmolality. DNA sequences similar to the putP, proP, and proU loci of E. coli K-12 were detected by DNA amplification and (or) hybridization and protein specifically reactive with antibodies raised against the ProX protein of E. coli K-12 (a ProU constituent) was detected by western blotting in over 95% of the isolates. Two anomalous isolates were reclassified as non-E. coli on the basis of the API 20E series of tests. A protein immunochemically cross-reactive with the ProP protein of E. coli K-12 was also expressed by the clinical isolates. Since all three transporters were ubiquitous, no particular correlation between clinical origin and PutP, ProP, or ProU activity was observed. These data suggest that the transporters encoded in loci putP, proP, and proU perform housekeeping functions essential for the survival of E. coli cells in diverse habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call