Abstract

A cyanobacterial sulfur-regulated gene (cysR), which encodes a protein with similarity to the Crp family of prokaryotic regulatory proteins, has recently been isolated and characterized. Polyacrylamide gel electrophoresis of periplasmic protein extracts reveals that a cysR mutant fails to synthesize a 36-kDa polypeptide that is normally induced in wild-type cells that have been grown under sulfur-deficient conditions. The amino-terminal sequence of this protein was obtained, and a synthetic oligonucleotide was used to isolated a clone containing a 1.9-kb NruI-KpnI fragment from a Synechococcus sp. strain PCC 7942 genomic library. RNA blot analysis indicates that this fragment encodes a transcript that is detectable in wild-type but not cysR mutant cells that have been starved for sulfur. DNA blot analysis revealed that the 1.9-kb NruI-KpnI fragment is contained within the Ba4 BamHI fragment of the endogenous 50-kb plasmid pANL. RNA blot studies indicate that the accumulation of a large number of pANL transcripts is regulated by sulfur levels and CysR. DNA sequence analysis confirmed that the gene encoding the sulfur-regulated 36-kDa periplasmic protein is encoded on the Ba4 fragment of pANL. The sequence of the 36-kDa protein displays sequence similarity to the enzyme catalase, and two downstream proteins exhibit 25 and 62% identity to a subunit of a P-type ATPase complex involved in Mg2+ transport and a chromate resistance determinant, respectively. Surprisingly, a strain in which the putative chromate resistance gene was interrupted by a drug resistance marker exhibited increased resistance to chromate when grown in media containing low sulfate concentrations. The possible role of this protein in the acclimation of cyanobacteria to conditions of low sulfur availability is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.