Abstract
The evolution of the nervous system is one of the most fascinating, but also most nebulous fields of homology research. We do not know for example whether the last common ancestors of human, squid, and fly already possessed an elaborate brain and eyes, or rather had a simple, diffuse nervous system. Nevertheless, in the past decade molecular data has greatly advanced our understanding of bilaterian nervous system evolution. In this methodological review, I explain the four levels on which molecular genetic studies advance the quest for homologies between animal nervous systems. (I) Bioinformatic homology research elucidates the evolutionary history of gene families relevant for nervous system evolution such as the opsin superfamily. It tells us when and in what order genes and their functions have emerged. Based on this, we can (II) infer the organismal complexity of some remote ancestor from the functional diversity of its reconstructed proteome. (III) Most common in molecular homology research has been the comparison of expression patterns of developmental control genes. This approach matches and aligns embryonic regions along the body axes, between remote bilaterians. It does not tell us much, however, about the complexity of structures that developed from these regions in Urbilateria. (IV) This is overcome by a novel variant of molecular homology research, the comparison of cell types. Here, a similar "molecular fingerprint" of cells is taken as indication of cross-bilaterian homology. This approach makes it possible to reconstruct the cell-type repertoire of the urbilaterian nervous system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.