Abstract

Active Appearance Models (AAMs) are generative parametric models that have been successfully used in the past to model faces. Anecdotal evidence, however, suggests that the performance of an AAM built to model the variation in appearance of a single person across pose, illumination, and expression (a Person Specific AAM) is substantially better than the performance of an AAM built to model the variation in appearance of many faces, including unseen subjects not in the training set (a Generic AAM). In this paper, we present an empirical evaluation that shows that Person Specific AAMs are, as expected, both easier to build and more robust to fit than Generic AAMs. Moreover, we show that: (1) building a generic shape model is far easier than building a generic appearance model, and (2) the shape component is the main cause of the reduced fitting robustness of Generic AAMs. We then proceed to describe two refinements to Generic AAMs to improve their performance: (1) a refitting procedure to improve the quality of the ground-truth data used to build the AAM and (2) a new fitting algorithm. For both refinements we demonstrate dramatically improved fitting performance. Finally, we evaluate the effect of these improvements on a combined model construction and fitting task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.