Abstract
Given a bounded constructible complex of sheaves F\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {F}$$\\end{document} on a complex Abelian variety, we prove an equality relating the cohomology jump loci of F\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {F}$$\\end{document} and its singular support. As an application, we identify two subsets of the set of holomorphic 1-forms with zeros on a complex smooth projective irregular variety X; one from Green-Lazarsfeld’s cohomology jump loci and one from the Kashiwara’s estimates for singular supports. This result is related to Kotschick’s conjecture about the equivalence between the existence of nowhere vanishing global holomorphic 1-forms and the existence of a fibre bundle structure over the circle. Our results give a conjecturally equivalent formulation using singular support, which is equivalent to a criterion involving cohomology jump loci proposed by Schreieder. As another application, we reprove a recent result proved by Schreieder and Yang; namely if X has simple Albanese variety and admits a fibre bundle structure over the circle, then the Albanese morphism cohomologically behaves like a smooth morphism with respect to integer coefficients. In a related direction, we address the question whether the set of 1-forms that vanish somewhere is a finite union of linear subspaces of H0(X,ΩX1)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H^0(X,\\Omega _X^1)$$\\end{document}. We show that this is indeed the case for forms admitting zero locus of codimension 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.