Abstract
The stability of linear initial–boundary-value problems for hyperbolic systems (with constant coefficients) is linked to the zeros of the so-called Lopatinskii determinant. Depending on the location of these zeros, problems may be either unstable, strongly stable or weakly stable. The first two classes are known to be ‘open’, in the sense that the instability or the strong stability persists under a small change of coefficients in the differential operator and/or in the boundary condition.Here we show that a third open class exists, which we call ‘weakly stable of real type’. Many examples of physical or mathematical interest depend on one or more parameters, and the determination of the stability class as a function of these parameters usually needs an involved computation. We simplify it by characterizing the transitions from one open class to another one. These boundaries are easier to determine since they must solve some overdetermined algebraic system.Applications to the wave equation, linear elasticity, shock waves and phase boundaries in fluid mechanics are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.