Abstract

Recent studies indicate that transient memory errors ( soft errors ) have become a relevant source of system failures. This paper presents a generic software-based fault-tolerance mechanism that transparently recovers from memory errors in object-oriented program data structures. The main benefits are the flexibility to choose from an extensible toolbox of easily pluggable error detection and correction schemes, such as Hamming and CRC codes. This is achieved by a combination of aspect-oriented and generative programming techniques. Furthermore, we present a wait-free synchronization algorithm for error detection in data structures that are used concurrently by multiple threads of control. We give a formal correctness proof and show the excellent scalability of our approach in a multiprocessor environment. In a case study, we present our experiences with selectively hardening the eCos operating system and its benchmark suite. We explore the trade-off between resiliency and performance by choosing only the most vulnerable data structures for error recovery. Thereby, the total number of system failures, manifesting as silent data corruptions and crashes, is reduced by 69.14 percent at a negligible runtime overhead of 0.36 percent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.