Abstract

We consider equivariant wave maps from the $(d+1)$--dimensional Minkowski spacetime into the $d$-sphere for $d\geq 4$. We find a new explicit stable self-similar solution and give numerical evidence that it plays the role of a universal attractor for generic blowup. An analogous result is obtained for the $SO(d)$ symmetric Yang-Mills field for $d\geq 6$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.