Abstract
We use a Toy Model of chemistry that represents molecules in terms of usual structural formulae to generate large chemical reaction networks. An extremely simplified quantum mechanical energy calculation and a straightforward implementation of reactions as graph rewritings ensure both transparency and closeness to chemical reality, both conditions that are necessary for the analysis of generic properties of large reaction networks. We show that some chemical networks graphs, e.g., repetitive Diels-Alder reactions, have the small-world property and exhibit a scale-free degree distribution. On the other hand, the Formose reaction does not fit well into this paradigm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.