Abstract

This paper presents novel regional statistical models for extracting object features, and an improved discriminative learning method, called as layer joint boosting, for generic multi-class object detection and categorization in cluttered scenes. Regional statistical properties on intensities are used to find sharing degrees among features in order to recognize generic objects efficiently. Based on boosting for multi-classification, the layer characteristic and two typical weights in sharing-code maps are taken into account to keep the maximum Hamming distance in categories, and heuristic search strategies are provided in the recognition process. Experimental results reveal that, compared with interest point detectors in representation and multi-boost in learning, joint layer boosting with statistical feature extraction can enhance the recognition rate consistently, with a similar detection rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.