Abstract

Abstract In order to address the computational costs of modeling and analyzing manufacturing processes, a novel approach to virtual manufacturing process engineering using generic modular operations is presented. Relying on a state based representation of operation control for a simplified virtual manufacturing workcell, the valid states for each sequence of generic modular operations are aggregated and both operation state and processing constraints applied to specify the subtasks required to complete each step in a product’s process plan. By adopting this state based control approach, virtual process engineering provides a direct mechanism to map virtual process representations onto actualized processes. Using these generic modular operations and their temporal and processing dependencies, the computationally complex elements of virtual manufacturing process simulation can be directly identified and an architecture for virtual process development specified. Examples from both machining and assembly processes are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.