Abstract

We perform general relativistic (GR) simulations of stellar core collapse to a protoneutron star, using a microphysical equation of state (EOS) and an approximation of deleptonization. We show that for a wide range of rotation rates and profiles the gravitational-wave (GW) burst signals from the core bounce are generic, known as type I. In our systematic study, using both GR and Newtonian gravity, we identify and quantify the influence of rotation, the EOS, and deleptonization on this result. Such a generic type of signal templates will facilitate a more efficient search in current and future GW detectors of both interferometric and resonant type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.