Abstract
LetMbe a countably infinite ω-categorical structure. Consider Aut(M) as a complete metric space by definingd(g, h) = Ω{2−n:g(xn) ≠h(xn) org−1(xn) ≠h−1(xn)} where {xn:n∈ ω} is an enumeration ofMAn automorphism α ∈ Aut(M) is generic if its conjugacy class is comeagre. J. Truss has shown in [11] that if the set P of all finite partial isomorphisms contains a co-final subset P1closed under conjugacy and having the amalgamation property and the joint embedding property then there is a generic automorphism. In the present paper we give a weaker condition of this kind which is equivalent to the existence of generic automorphisms. Really we give more: a characterization of the existence of generic expansions (defined in an appropriate way) of an ω-categorical structure. We also show that Truss' condition guarantees the existence of a countable structure consisting of automorphisms ofMwhich can be considered as an atomic model of some theory naturally associated toM. We do it in a general context of weak models for second-order quantifiers.The author thanks Ludomir Newelski for pointing out a mistake in the first version of Theorem 1.2 and for interesting discussions. Also, the author is grateful to the referee for very helpful remarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.