Abstract

Dynamic molecular devices operating with time- and history-dependent performance raised new challenges for the fundamental study of microscopic non-steady-state charge transport as well as functionalities that are not achievable by steady-state devices. In this study, we reported a generic dynamic mode of molecular devices by addressing the transient redox state of ubiquitous quinone molecules in the junction by proton/water transfer. The diffusion limited slow proton/water transfer-modulated fast electron transport, leading to a non-steady-state transport process, as manifested by the negative differential resistance, dynamic hysteresis, and memory-like behavior. A quantitative paradigm for the study of the non-steady-state charge transport kinetics was further developed by combining the theoretical model and transient state characterization, and the principle of the dynamic device can be revealed by the numerical simulator. On applying pulse stimulation, the dynamic device emulated the neuron synaptic response with frequency-dependent depression and facilitation, implying a great potential for future nonlinear and brain-inspired devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.