Abstract
It is well established that adhesively bonding plates to the surfaces of reinforced concrete members is an efficient retrofitting approach. Specifically, two techniques have emerged: Using thin externally bonded (EB) sheets/plates and near-surface mounted (NSM) strips/bars. A good amount of research has been undertaken worldwide to understand the fundamental behavior describing such adhesively bonded plate-to-concrete joints. Unfortunately, until now, no generic model exists to determine the debonding resistance of both retrofitting techniques. In this paper, a generic analytical model is derived to determine the debonding resistance of any adhesively bonded plate-to-concrete joint using an idealized linear-softening local interface bond-slip relationship. The model is derived using a unique definition of the debonding failure plane and confinement ratio such that it is suitable for both the externally bonded and near-surface mounted techniques. The model is validated by comparison with existing push-pull data as well as 14 new push-pull tests with varying plate cross-section aspect ratios. Comparison with an existing well-known model demonstrates the suitability of the proposed generic model. The model can be used to predict the intermediate crack debonding resistance of strengthened reinforced concrete members.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.