Abstract
Microscopic simulation models have become widely applied tools in traffic engineering. Nevertheless, parameter identification of these models remains a difficult task. This is partially because parameters are generally not directly observable from common traffic data; also there is a lack of reliable statistical estimation techniques. This study puts forward a new general and structured approach to identifying parameters of car-following models. One of the main contributions of this study is joint estimation of parameters for multiple vehicles. Furthermore, prior information on the parameter values (or the valid range of values) can be estimated. The study also deals with serial correlation in the trajectory data. In doing so, the newly developed approach generalizes the maximum likelihood estimation approach proposed by the authors. The approach allows for statistical analysis of the model estimates, including the standard error of the parameter estimates and the correlation of the estimates. With the likelihood ratio test, models of different complexity (defined by the number of model parameters) can be cross-compared. A useful property of this test is that it takes into account the number of parameters of a model as well as the performance. The approach is applied to car-following behavior by using Dutch freeway vehicle trajectories collected from a helicopter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.