Abstract
We discuss the generic behavior of the hydrodynamic function H(q) and diffusion function D(q) characterizing the short-time diffusion in suspensions of charge-stabilized colloidal spheres, by covering the whole fluid regime. Special focus is given to the behavior of these functions at the freezing transition specified by the Hansen-Verlet freezing rule. Results are presented in dependence on scattering wavenumber q, effective particle charge, volume fraction, salt concentration, and particle size, by considering both the low-charge and high-charge branch solutions of static structure factors. The existence of two charge branches leads to the prediction of a re-entrant melting-freezing-melting transition for increasing particle concentration at very low salinity. A universal limiting contour line is derived for the principal peak height value of H(q), independent of particle charge and diameter, and concentration and salinity, which separates the fluid from the fluid-solid coexistence region. This line is only weakly dependent on the value of the structure factor peak height entering the Hansen-Verlet rule. A dynamic freezing criterion is derived in terms of the short-time cage diffusion coefficient, a quantity easily measurable in a scattering experiment. The higher-dimensional parameter scans underlying this study make use of the fast and highly efficient deltagamma-scheme in conjunction with the analytic rescaled mean spherical approximation input for the static structure factor. Our results constitute a comprehensive database useful to researchers performing dynamic scattering experiments on charge-stabilized dispersions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.