Abstract

Movement-related potentials (MRPs) associated with tongue protrusions and vocalizations were recorded from chronically implanted subdural electrodes over the lower perirolandic area in 7 patients being evaluated for epilepsy surgery. In 3 patients, tongue protrusions elicited a clearly defined, well localized slow negative Bereitschaftspotential (BP) at the motor tongue area, and a positive BP at the sensory tongue area. At the motor tongue area the negative BP was followed by a negative slope (NS′) and a motor potential (MP), and at the sensory tongue area the positive BP and a positive reafferent potential (RAP) were seen but no NS′ and MP could be identified. In the other 4 patients, tongue protrusions elicited positive BP, NS′ and MP at the motor and sensory tongue area, and positive RAP at the sensory area. It was concluded that BPs, NS′ and MPs are mainly generated in the motor cortex involving the crown as well as the anterior bank of the central fissure. The sensory cortex (areas 3a and 3b) also participated in the generation of BPs but to a lesser degree. Different degree of involvement of these multiple generators most likely explains the interindividual variability of polarity and distribution of the MRPs. RAPS most likely arise from primary sensory areas 1 and 2. Brain potentials were also recorded at the motor (2 patients) and sensory (2 patients) language areas, but no specific language-related potentials could be identified. Evoked potentials to lip stimulation were investigated in 4 patients. In 3 patients, the responses at the sensory tongue area (P16, N21 and P30) had the same latency but opposite polarity to those at the motor tongue area. In the other patient, the responses (P16, N21 and P30) at the motor and sensory tongue areas were of the same polarity. The MRPs to tongue protrusions in those 4 patients revealed the same polarity relationship between the pre- and postcentral potentials. However, the maximal amplitude of evoked potentials and MRPs was seen at almost the same electrodes, suggesting that the main generators for these MRPs and evoked potentials must be located at contiguous areas in the anterior and posterior bank, respectively, of the central fissure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.