Abstract
We use a reference state based on symmetry-restored states from deformed mean-field or generator-coordinate-method (GCM) calculations in conjunction with the in-medium similarity-renormalization group (IMSRG) to compute spectra and matrix elements for neutrinoless double-beta ($0\nu\beta\beta$) decay. Because the decay involves ground states from two nuclei, we use evolved operators from the IMSRG in one nucleus in a subsequent GCM calculation in the other. We benchmark the resulting IMSRG+GCM method against complete shell-model diagonalization for both the energies of low-lying states in $^{48}$Ca and $^{48}$Ti and the $0\nu\beta\beta$ matrix element for the decay of $^{48}$Ca, all in a single valence shell. Our approach produces better spectra than either the IMSRG with a spherical-mean-field reference or GCM calculations with unevolved operators. For the $0\nu\beta\beta$ matrix element the improvement is slight, but we expect more significant effects in full ab-initio calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.