Abstract

Centralized power supply systems for passenger and special trains with generator cars (GCs) are characterized by a lower specific weight and cost of equipment and lower service and repair expenses, as well as the possibility of using the standard general-purpose electrical apparatus. Their disadvantages include a large amount of noxious atmospheric emissions when diesel generators with a load less than the rated value are in operation and a high noise level. This hinders the operation of GCs at stations and depots and in tunnels. Designing combined power systems in which alternative energy sources, particularly as regards electrochemical generators (ECG) characterized by the absence of noxious atmospheric emissions, low noise level, higher efficiency increasing with the loads lower than the rated ones are used along with diesel generators is a method of improving the ecological performance of generator cars. The power control methods, the principles of control system construction, and the variants of the structure and an ECG energy channel operating with a voltage inverter in parallel to a synchronous generator are discussed in this article. The possibility of controlling the active and reactive powers of the ECG energy channel within a wide range by changing the modulation coefficient and the initial phase of the master effect of the voltage inverter is shown. A block diagram of the control system providing high speed and satisfactory quality of the transient processes in the energy system with the GC is proposed. The mathematical modeling method is used to indicate the possibility of ensuring a satisfactory quality of electric energy on the channel output (the total harmonic distortion does not excess 10–12%) with a rather high efficiency (80–88%) over the total power range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call