Abstract
Abstract Generative Topographic Mapping (GTM) is an important technique for dimension reduction which has been successfully applied to many fields. However the usual Expectation-Maximization (EM) approach to GTM can easily get stuck in local minima and so we introduce a Deterministic Annealing (DA) approach to GTM which is more robust and less sensitive to initial conditions so we do not need to use many initial values to find good solutions. DA has been very successful in clustering, hidden Markov Models and Multidimensional Scaling but typically uses a fixed cooling schemes to control the temperature of the system. We propose a new cooling scheme which can adaptively adjust the choice of temperature in the middle of process to find better solutions. Our experimental measurements suggest that deterministic annealing improves the quality of GTM solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.