Abstract

Bistate plates have found extensive applications in the domains of smart structures and energy harvesting devices. Most bistable curved plates are characterized by a constant thickness profile. Regrettably, due to the inherent complexity of this problem, relatively little attention has been devoted to this area. In this study, we demonstrate how deep learning can facilitate the discovery of novel plate profiles that cater to multiple objectives, including maximizing stiffness, forward snapping force, and backward snapping force. Our proposed approach is distinguished by its efficiency in terms of low computational energy consumption and high effectiveness. It holds promise for future applications in the design and optimization of multistable structures with diverse objectives, addressing the requirements of various fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.