Abstract

This work examines the use of generative adversarial networks for reconstructing sound fields from experimental data. It is investigated whether generative models, which learn the underlying statistics of a given signal or process, can improve the spatio-temporal reconstruction of a sound field by extending its bandwidth. The problem is significant as acoustic array processing is naturally band limited by the spatial sampling of the sound field (due to the difficulty to satisfy the Nyquist criterion in space domain at high frequencies). In this study, the reconstruction of spatial room impulse responses in a conventional room is tested based on three different generative adversarial models. The results indicate that the models can improve the reconstruction, mostly by recovering some of the sound field energy that would otherwise be lost at high frequencies. There is an encouraging outlook in the use of statistical learning models to overcome the bandwidth limitations of acoustic sensor arrays. The approach can be of interest in other areas, such as computational acoustics, to alleviate the classical computational burden at high frequencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.