Abstract

Aboveground biomass (AGB) is an important forest attribute directly linked to the forest carbon pool. The use of satellite remote sensing (RS) data has increased for AGB prediction due to their large footprint and low-cost availability. However, they have been limited due to saturation effect that leads to low prediction precision. In this study, we propose an innovative and dynamic architecture based on generative neural network that extracts target oriented generative features for predicting forest AGB using satellite RS data. These features are more resilient to mixed forest types and geographical conditions as compared to the traditional features and models. The effectiveness of the proposed features was assessed by experiments performed using multispectral (MS), Synthetic aperture Radar (SAR) and combined dual-source (DS) datasets. The proposed model achieved best performance in terms of precision, model agreement and overfitting as compared to the other conventional models for all analyzed datasets. The t-distributed stochastic neighbor embedding (t-SNE) scatterplots of the generative features clearly show one dimension of the feature space associated with the target AGB. Feature importance analysis indicated that the produced generative features were more significant than the conventional analytical features. Also, the model provided a robust framework for homogeneous fusion of multi-sensor features from satellite RS data for predicting AGB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.