Abstract

This article presents a novel computational framework for modeling cognitive development. The new modeling paradigm provides a language with which to compare and contrast radically different facets of children's knowledge. Concepts from the study of machine learning are used to explore the power of connectionist networks that construct their own architectures during learning. These so-called generative algorithms are shown to escape from Fodor's (1980) critique of Constructivist development. We describe one generative connectionist algorithm (cascade-correlation) in detail. We report on the successful use of the algorithm to model cognitive development on balance scale phenomena; seriation; the integration of velocity, time, and distance cues; prediction of effect sizes from magnitudes of causal potencies and effect resistances; and the acquisition of English personal pronouns. The article demonstrates that computer models are invaluable for illuminating otherwise obscure discussions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.