Abstract

Deep Learning Classification is often used to analyze biomedical data. One of them is to analyze the Fetal Heart Rate (FHR) signal data used to check and monitor maternal and fetal health and prevent mobility and mortality in fetuses at risk of developing hypoxia. The problem that often occurs in the data is data unbalance. Time Series Generative Adversarial Networks (TSGAN) solves data imbalance in the FHR signal and generate more data and better classification performance. Augmentation using the GAN model in this study obtained an increase in the Quality Index of 3%–44% from other models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.