Abstract

Detailed detector simulation models are vital for the successful operation of modern high-energy physics experiments. In most cases, running detailed models requires a significant amount of computing resources. It is desired to have approaches that are less resource-intensive. In this work, we demonstrate the applicability of Generative Adversarial Networks (GAN) as a basis for such fast-simulation models for the case of the Time Projection Chamber (TPC) at the MPD detector at the NICA accelerator complex. Our prototype GAN-based model of TPC works faster than the detailed simulation in an order of magnitude without any noticeable drop in the quality of the high-level reconstruction characteristics for the generated data. Approaches with direct and indirect quality metrics optimization are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.