Abstract
There have been major advances in the field of data science in the last few decades, and these have been utilized for different engineering disciplines and applications. Artificial intelligence (AI), machine learning (ML) and deep learning (DL) algorithms have been utilized for civil structural health Monitoring (SHM) especially for damage detection applications using sensor data. Although ML and DL methods show superior learning skills for complex data structures, they require plenty of data for training. However, in SHM, data collection from civil structures can be expensive and time taking; particularly getting useful data (damage associated data) can be challenging. The objective of this study is to address the data scarcity problem for damage detection applications. This paper employs 1-D Wasserstein Deep Convolutional Generative Adversarial Networks using Gradient Penalty (1-D WDCGAN-GP) for synthetic labelled acceleration data generation. Then, the generated data is augmented with varying ratios for the training data set of a 1-D deep convolutional neural network (1-D DCNN) for damage detection application. The damage detection results show that the 1-D WDCGAN-GP can be successfully utilized to tackle data scarcity in vibration-based damage detection applications of civil structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.