Abstract
Entity alignment is an essential process in knowledge graph (KG) fusion, which aims to link entities representing the same real-world object in different KGs, to achieve entity expansion and graph fusion. Recently, embedding-based entity pair similarity evaluation has become mainstream in entity alignment research. However, these methods heavily rely on labelled entity pairs, which are often unavailable. Some self-supervised methods exploit features of KGs regardless of noise when generating aligned entity pairs. To resolve this issue, we propose a generative adversarial entity alignment method, which is more robust to noise data. The proposed method then exploits both attribute and structure information in the KGs and applies a BERT-based contrastive loss function to embed entities in KGs. Experimental results on several benchmark datasets demonstrate the superiority of our framework compared with most existing state-of-the-art entity alignment methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.