Abstract
Image inpainting, which is the repair of pixels in damaged areas of an image to make it look as much like the original image as possible. Deep learning-based image inpainting technology is a prominent area of current research interest. This paper focuses on a systematic and comprehensive study of GAN-based image inpainting and presents an analytical summary. Firstly, this paper introduces GAN, which includes the principle of GAN and its mathematical expression. Secondly, the recent GAN-based image inpainting algorithms are summarized, and the advantages and disadvantages of each algorithm are listed. After that, the evaluation metrics, and common datasets of deep learning-based image inpainting are listed. Finally, the existing image inpainting methods are summarized and summarized, and the ideas for future key research directions are presented and prospected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.