Abstract

In geosciences, generative adversarial networks have been successfully applied to generate multiple realizations of rock properties from geological priors described by training images, within probabilistic seismic inversion and history matching methods. Here, the use of generative adversarial networks is proposed not as a model generator but as a model reconstruction technique for subsurface models where we do have access to sparse measurements of the subsurface properties of interest. We use sets of geostatistical realizations as training datasets combined with observed experimental data. These networks are applied to reconstruct nonstationary sedimentary channels and continuous elastic properties, such as P-wave propagation velocity, in the presence and absence of conditioning data. The reconstruction examples shown herein can be considered a post-processing step applied after seismic inversion and performed at those locations where the convergence of the inversion is low, and therefore, the inverted models are associated with high uncertainty. The application examples show the suitability of generative adversarial networks in learning the spatial structure of the data from sets of geostatistical realizations. The generated models reproduce the first- and second-order statistical moments and the spatial covariance matrix of the training dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.